About IMS CHIPS

IMS CHIPS, Institut für Mikroelektronik Stuttgart, conducts businessoriented research in the field of microelectronics in the areas of silicon photonics, integrated circuits and systems, nanostructuring and MEMS. It is a recognized non-profit foundation under civil law and is located on the Stuttgart-Vaihingen research campus.

The institute is a member of the Innovationsallianz Baden-Württemberg (innBW), a cooperation of ten contract research organizations in Baden-Württemberg comprising a total of twelve institutes.

Institut für Mikroelektronik Stuttgart

Allmandring 30a 70569 Stuttgart, Germany Phone: +49 711 21855 - 0 info@ Fax: +49 711 21855 - 111 www

info@ims-chips.de www.ims-chips.com

Astrit Shoshi Phone: +49 711 21855-459 F shoshi@ims-chips.de H

Julian HartbaumJörg ButschkePhone: +49 711 21855-471Phone: +49 711 21855-453hartbaum@ims-chips.debutschke@ims-chips.de

F

Follow us on LinkedIn: www.linkedin.com/company/ims-chips

Slanted and Blazed Gratings

Varying duty cycle (0.2 - 0.8), constant height (125 nm) and pitch (500 nm)

Continuous height (40 nm/mm), varying pitch (400 - 500 nm) and duty cycle (0.2 - 0.8)

Varying blazed angle (45°-90°), constant anti-blazed angle (45°)

Institut für Mikroelektronik Stuttgart

MASTER STAMPS

WWW.IMS-CHIPS.COM

Master Stamps

We provide master stamps for any replication techniques and for versatile applications:

- Substrate type: Si-/Qz wafer 150, 200, 300 mm and Quartz Blanks 6", 9"
- **Stamp size:** from a few mm² up to substrate size
- **Feature types:** binary, multi-level 3D, analog 3D, slanted gratings, blazed gratings
- Wide range of pattern dimensions from nanometerto micrometer-scale

Detailed characterization by in-line measurement tools

Fabrication in a certified line in an ISO4 clean room

Based on our experience we assist with our customers to identify the most appropriate solution for them

Substrates

Si wafer: 150/200/300 mm

Qz wafer: 150 / 200 / 300 mm

Binary

40 nm half pitch

50 nm half pitch

Mesa: Patterning on Pedestal

500 nm pillars, 1.5 µm height

Borderless patterning on a pedestal

500 nm diameter

50 µm height

3 layer exposures, 8 steps, 5 µm pitch

60 nm pillars on 120 nm lines

Analog 3D

Laser / e-Beam Grayscale

20 µm pitch, 10 µm height

3 µm pitch, 4 µm height

10 µm pitch, 4 µm height

Nano lenses, 270 nm height

Thermal Reflow

Micro lense array, 46 µm diameter, 23 µm height